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1
Scope

The present document captures the findings of the study item, “Study on channel model for frequency spectrum above 6 GHz” [2] and from further findings of the study item, “Study on New Radio Access Technology [X].” The channel models in the present document address the frequency range 0.5-100 GHz. The purpose of this TR is to help TSG RAN WG1 to properly model and evaluate the performance of physical layer techniques using the appropriate channel model(s). Therefore the TR will be kept up-to-date via CRs in the future. 
This document relates to the 3GPP evaluation methodology and covers the modelling of the physical layer of both Mobile Equipment and Access Network of 3GPP systems.

This document is intended to capture the channel model(s) for frequencies from 0.5GHz up to 100GHz.
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Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

3.2
Symbols

For the purposes of the present document, the following symbols apply:
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antenna radiation power pattern 
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maximum attenuation
d2D
2D distance between Tx and Rx
d3D
3D distance between Tx and Rx
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antenna element spacing in horizontal direction
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antenna element spacing in vertical direction
f
frequency
fc
center frequency / carrier frequency
Frx,u,θ
Receive antenna element u field pattern in the direction of the spherical basis vector 
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Frx,u,ϕ
Receive antenna element u field pattern in the direction of the spherical basis vector 
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Ftx,s,θ
Transmit antenna element s field pattern in the direction of the spherical basis vector 
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Frx,s,ϕ
Transmit antenna element s field pattern in the direction of the spherical basis vector 
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hBS
antenna height for BS
hUT
antenna height for UT
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spherical unit vector of cluster n, ray m, for receiver
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spherical unit vector of cluster n, ray m, for transmitter
(
bearing angle
(
downtilt angle
(
slant angle

[image: image13.wmf]l


wavelength

cross-polarization power ratio in linear scale

lgASA
mean value of 10-base logarithm of azimuth angle spread of arrival

lgASD
mean value of 10-base logarithm of azimuth angle spread of departure

lgDS
mean value of 10-base logarithm of delay spread

lgZSA
mean value of 10-base logarithm of zenith angle spread of arrival

lgZSD
mean value of 10-base logarithm of zenith angle spread of departure

[image: image14.wmf]V

SLA


side-lobe attenuation in vertical direction
lgASA
standard deviation of 10-base logarithm of azimuth angle spread of arrival

lgASD
standard deviation of 10-base logarithm of azimuth angle spread of departure

lgDS
standard deviation value of 10-base logarithm of delay spread

lgZSA
standard deviation of 10-base logarithm of zenith angle spread of arrival

lgZSD
standard deviation of 10-base logarithm of zenith angle spread of departure
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standard deviation of SF
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azimuth angle
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zenith angle
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spherical basis vector (unit vector) for GCS

[image: image19.wmf]f

¢

ˆ


spherical basis vector (unit vector) for LCS
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horizontal 3 dB beamwidth of an antenna
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spherical basis vector (unit vector), orthogonal to 
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, for GCS
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spherical basis vector (unit vector), orthogonal to 
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ˆ

, for LCS
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electrical steering angle in vertical direction
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vertical 3 dB beamwidth of an antenna
(
Angular displacement between two pairs of unit vectors

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
2D
two-dimensional
3D
three-dimensional
AOA
Azimuth angle Of Arrival
AOD
Azimuth angle Of Departure
AS
Angular Spread
ASA
Azimuth angle Spread of Arrival
ASD
Azimuth angle Spread of Departure
BF
Beamforming
BS
Base Station
BP
Breakpoint
BW
Beamwidth
CDF
Cumulative Distribution Function
CDL
Clustered Delay Line
CRS
Common Reference Signal
D2D
Device-to-Device
DFT
Discrete Fourier Transform
DS
Delay Spread
GCS
Global Coordinate System
IID
Independent and identically distributed
InH
Indoor Hotspot
IRR
Infrared Reflecting
ISD
Intersite Distance
K
Ricean K factor
LCS
Local Coordinate System
LOS
Line Of Sight
MIMO
Multiple-Input-Multiple-Output
MPC
Multipath Component
NLOS
Non-LOS
O2I
Outdoor-to-Indoor
O2O
Outdoor-to-Outdoor
OFDM
Orthogonal Frequency-Division Multiplexing
PAS
Power angular spectrum
PL
Path Loss
PRB
Physical Resource Block
RCS
Radar cross-section
Rma
Rural Macro
RMS
Root Mean Square
RSRP
Reference Signal Received Power
Rx
Receiver
SCM
Spatial Channel Model
SINR
Signal-to-Interference-plus-Noise Ratio
SIR
Signal-to-Interference Ratio
SSCM
Statistical Spatial Channel Model
SF
Shadow Fading
SLA
Sidelobe Attenuation
TDL
Tapped Delay Line
TOA
Time Of Arrival
TRP
Transmission Reception Point
Tx
Transmitter
Uma
Urban Macro
Umi
Urban Micro
UT
User Terminal
7.4
Pathloss, LOS probability and penetration modelling

7.4.1
Pathloss
The pathloss models are summarized in Table 7.4.1-1 and the distance definitions are indicated in Figure 7.4.1-1 and Figure 7.4.1-2. Note that the distribution of the shadow fading is log-normal, and its standard deviation for each scenario is given in Table 7.4.1-1.
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	Figure7.4.1-1: Definition of d2D and d3D 
for outdoor Uts
	Figure 7.4.1-2: Definition of d2D-out, d2D-in 
and d3D-out, d3D-in for indoor Uts. 
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(7.4-1)
Table 7.4.1-1: Pathloss models

	Scenario
	LOS/NLOS
	Pathloss [dB], fc is in GHz and d is in meters (6)
	Shadow 

fading 

std [dB]
	Applicability range, 

antenna height 

default values 

	RMa
	LOS
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h = avg. building height

W = avg. street width

The applicability ranges: 
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Explanations: see note 3
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Explanations: see note 4
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	Note 1 :
Breakpoint distance d’BP = 4 h’BS h’UT fc/c, where fc is the centre frequency in Hz, c = 3.0(108 m/s is the propagation velocity in free space, and h’BS and h’UT are the effective antenna heights at the BS and the UT, respectively. The effective antenna heights h’BS and h’UT are computed as follows: h’BS = hBS – hE, h’UT = hUT – hE, where hBS and hUT are the actual antenna heights, and hE is the effective environment height. For Umi hE = 1.0m. For Uma hE=1m with a probability equal to 1/(1+C(d2D, hUT)) and chosen from a discrete uniform distribution uniform(12,15,…,(hUT-1.5)) otherwise. With C(d2D, hUT) given by
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Note 2 :
The applicable frequency range of the PL formula in this table is 0.5 < fc < fH GHz, where fH = 30 GHz for Rma and fH = 100 GHz for all the other scenarios. It is noted that Rma pathloss model for >7 GHz is validated based on a single measurement campaign conducted at 24 GHz.

Note 3:
Uma NLOS pathloss is from TR36.873 with simplified format and PLUma-LOS = Pathloss of Uma LOS outdoor scenario.

Note 4:
PLUmi-LOS = Pathloss of Umi-Street Canyon LOS outdoor scenario.

Note 5:
Break point distance dBP = 2π hBS hUT fc/c, where fc is the centre frequency in Hz, c = 3.0 ( 108 m/s is the propagation velocity in free space, and hBS and hUT are the antenna heights at the BS and the UT, respectively.
Note 6:
fc denotes the center frequency normalized by 1GHz, all distance related values are normalized by 1m, unless it is stated otherwise.


7.4.2
LOS probability
The Line-Of-Sight (LOS) probabilities are given in Table 7.4.2-1.
Table 7.4.2-1 LOS probability
	Scenario
	LOS probability (distance is in meters)

	Rma
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	Umi – Street canyon
	Outdoor users:
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Indoor users:

Use d2D-out in the formula above instead of d2D

	Uma
	Outdoor users:
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where
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Indoor users:
Use d2D-out in the formula above instead of d2D

	Indoor – Mixed office
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	Indoor – Open office
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	Note:
The LOS probability is derived with assuming antenna heights of 3m for indoor, 10m for Umi, and 25m for Uma


7.4.3
O2I penetration loss
The pathloss incorporating O2I building penetration loss is modelled as in the following:
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where 
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 is the basic outdoor path loss given in Section 7.4.1, where d3D is replaced by (d3D-out + d3D-in). 
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 is the building penetration loss through the external wall, 
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  is the inside loss dependent on the depth into the building, and σP  is the standard deviation for the penetration loss. 
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(7.4-3)
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  is an additional loss is added to the external wall loss to account for non-perpendicular incidence; 
[image: image100.wmf]f

b

a

L

i

material

i

material

i

material

×

+

=

_

_

_

, is the penetration loss of material I, example values of which can be found in Table 7.4.3-1. Pi is proportion of i-th materials, where 
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; and N is the number of materials.
Table 7.4.3-1: Material penetration losses

	Material
	Penetration loss [dB]

	Standard multi-pane glass
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	IRR glass
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	Concrete
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	Wood
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	Note: 
f is in GHz


Table 7.4.3-2 gives 
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, 
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 and σP for two O2I penetration loss models. The O2I penetration is UT-specifically generated, and is added to the SF realization in the log domain.
Table 7.4.3-2: O2I penetration loss model

	 
	Path loss through external wall:
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 in [dB]
	Indoor loss:

[image: image109.wmf]in

PL

 in [dB]
	Standard deviation:
σP in [dB]

	Low-loss model
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	0.5d2D-in
	4.4

	High-loss model
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d2D-in is minimum of two independently generated uniformly distributed variables between 0 and 25 m for Uma and Umi-Street Canyon, and between 0 and 10 m for Rma. D2D-in shall be UT-specifically generated.
Both low-loss and high-loss models are applicable to Uma and Umi-Street Canyon. 
Only the low-loss model is applicable to Rma. 

The composition of low and high loss is a simulation parameter that should be determined by the user of the channel models, and is dependent on the use of metal-coated glass in buildings and the deployment scenarios. Such use is expected to differ in different markets and regions of the world and also may increase over years to new regulations and energy saving initiatives. Furthermore, the use of such high-loss glass currently appears to be more predominant in commercial buildings than in residential buildings in some regions of the world
. 
The pathloss incorporating O2I car penetration loss is modelled as in the following:
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where 
[image: image113.wmf]b

PL

 is the basic outdoor path loss given in Section 7.4.1. μ = 9, and σP = 5. The car penetration loss shall be UT-specifically generated. Optionally, for metallized car windows, μ = 20 can be used. The O2I car penetration loss models are applicable for at least 0.6-60 GHz. 
For backwards compatibility with TR 36.873 [3], the following building penetration model should be used for Uma and Umi single-frequency simulations at frequencies below 6 GHz. 

Table 7.4.3-3. Building penetration loss model for single-frequency simulations <6 GHz
	Parameter
	Value
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	20 dB
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	0.5d2D-in
with d2D-in being a single, link-specific, uniformly distributed variable between 0 and 25 m

	σP
	0 dB

	σSF
	7 dB (note: replacing the respective value in Table 7.4.1-1)


7.4.4
Autocorrelation of shadow fading

The long-term (log-normal) fading in the logarithmic scale around the mean path loss PL (dB) is characterized by a Gaussian distribution with zero mean and standard deviation. Due to the slow fading process versus distance x 
(x is in the horizontal plane), adjacent fading values are correlated. Its normalized autocorrelation function R(x) can be described with sufficient accuracy by the exponential function ITU-R Rec. P.1816 [18]
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with the correlation length dcor being dependent on the environment, see the correlation parameters for shadowing and other large scale parameters in Table 7.5-6 (Channel model parameters). In a spatial consistency procedure in Section 7.6.3, the cluster specific random variables are also correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.
7.5
Fast fading model
The radio channel realizations are created using the parameters listed in Table 7.5-1. The channel realizations are obtained by a step-wise procedure illustrated in Figure 7.5-1 and described below. It has to be noted that the geometric description covers arrival angles from the last bounce scatterers and respectively departure angles to the first scatterers interacted from the transmitting side. The propagation between the first and the last interaction is not defined. Thus, this approach can model also multiple interactions with the scattering media. This indicates also that e.g., the delay of a multipath component cannot be determined by the geometry. In the following steps, downlink is assumed. For uplink, arrival and departure parameters have to be swapped. 

Note: the channel generation in this section is enough for at least the following cases.

-
Case 1: For low complexity evaluations
-
Case 2: To compare with earlier simulation results, 

-
Case 3: When none of the additional 
odelling components are turned on. 
For other advanced simulations, e.g., spatially consistency, large bandwidth and arrays, oxygen absorption, blockage, etc., some of the additional modelling components of Section 7.6 should be considered.
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Figure 7.5-1 Channel coefficient generation procedure

[image: image118]
Figure 7.5-2: Definition of a global coordinate system showing the zenith angle θ and the azimuth angle ϕ. Θ=00 points to zenith and θ=+900 points to the horizon. 
The spherical basis vectors 
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 and 
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 shown above are defined based on the direction of propagation
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Table 7.5-1: Notations in the global coordinate system (GCS) 
	Parameter
	Notation

	LOS AOD
	ϕLOS,AOD

	LOS AOA
	ϕLOS,AOA

	LOS ZOD
	θLOS,ZOD

	LOS ZOA
	θLOS,ZOA

	AOA for cluster n
	ϕn,AOA

	AOD for cluster n
	ϕn,AOD

	AOA for ray m in cluster n
	ϕn,m,AOA

	AOD for ray m in cluster n
	ϕn,m,AOD

	ZOA for cluster n
	θn,ZOA

	ZOD for cluster n
	θn,ZOD

	ZOA for ray m in cluster n
	θn,m,ZOA

	ZOD for ray m in cluster n
	θn,m,ZOD

	Receive antenna element u field pattern in the direction of the spherical basis vector 
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	Frx,u,θ

	Receive antenna element u field pattern in the direction of the spherical basis vector 
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	Frx,u,ϕ

	Transmit antenna element s field pattern in the direction of the spherical basis vector 
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	Ftx,s,θ

	Transmit antenna element s field pattern in the direction of the spherical basis vector 
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	Frx,s,ϕ


Step 1: Set environment, network layout, and antenna array parameters

a) 
Choose one of the scenarios (e.g. Uma, Umi-Street Canyon, Rma or InH-Office). Choose a global coordinate system and define zenith angle θ, azimuth angle ϕ, and spherical basis vectors 
[image: image126.wmf]q

ˆ

, 
[image: image127.wmf]f

ˆ

 as shown in Figure 7.3-2. Note: Scenario Rma is for up to 7GHz while others are for up to 100GHz

b)
Give number of BS and UT

c)
Give 3D locations of BS and UT, and determine LOS AOD (ϕLOS,AOD), LOS ZOD (θLOS,ZOD), LOS AOA (ϕLOS,AOA), and LOS ZOA (θLOS,ZOA) of each BS and UT in the global coordinate system

d)
Give BS and UT antenna field patterns Frx and Ftx in the global coordinate system and array geometries

e)
Give BS and UT array orientations with respect to the global coordinate system. BS array orientation is defined by three angles ΩBS,α (BS bearing angle), ΩBS,β (BS downtilt angle) and ΩBS,γ (BS slant angle). UT array orientation is defined by three angles ΩUT,α (UT bearing angle), ΩUT,β (UT downtilt angle) and ΩUT,γ (UT slant angle).

f)
Give speed and direction of motion of UT in the global coordinate system

g)
Specify system centre frequency 
[image: image128.wmf]c

f

 and bandwidth 
[image: image129.wmf]B


Note: In case wrapping is used, each wrapping copy of a BS or site should be treated as a separate BS/site considering channel generation.

Large scale parameters:

Step 2: Assign propagation condition (LOS/NLOS) according to Table 7.4.2-1. The propagation conditions for different BS-UT links are uncorrelated. 

Also, assign an indoor/outdoor state for each UT. It is noted that all the links from a UT have the same indoor/outdoor state. 
Step 3: Calculate pathloss with formulas in Table 7.4.1-1 for each BS-UT link to be modelled.

Step 4: Generate large scale parameters, e.g. delay spread (DS), angular spreads (ASA, ASD, ZSA, ZSD), Ricean K factor (K) and shadow fading (SF) taking into account cross correlation according to Table 7.5-6 and using the procedure described in section 3.3.1 of [14] with the square root matrix
[image: image130.wmf])
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being generated using the Cholesky decomposition and the following order of the large scale parameter vector: sM = [sSF, sK, sDS, sASD, sASA, sZSD, sZSA]T. 
These LSPs for different BS-UT links are uncorrelated, but the LSPs for links from co-sited sectors to a UT are the same. In addition, these LSPs for the links of Uts on different floors are uncorrelated. 
Limit random RMS azimuth arrival and azimuth departure spread values to 104 degrees, i.e., ASA= min(ASA ,104(), ASD = min(ASD ,104(). Limit random RMS zenith arrival and zenith departure spread values to 52 degrees, i.e., ZSA = min(ZSA,52(), ZSD = min(ZSD,52().
Small scale parameters:

Step 5: Generate delays 

Delays are drawn randomly from the delay distribution defined in Table 7.5-6. With exponential delay distribution calculate
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Where r is the delay distribution proportionality factor, Xn ~ uniform(0,1), and cluster index n = 1,…,N. With uniform delay distribution the delay values 
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 are drawn from the corresponding range. Normalise the delays by subtracting the minimum delay and sort the normalised delays to ascending order:
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In the case of LOS condition, additional scaling of delays is required to compensate for the effect of LOS peak addition to the delay spread. The heuristically determined Ricean K-factor dependent scaling constant is
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where K [dB] is the Ricean K-factor as generated in Step 4. The scaled delays
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are not to be used in cluster power generation.

Step 6: Generate cluster powers 
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Cluster powers are calculated assuming a single slope exponential power delay profile. Power assignment depends on the delay distribution defined in Table 7.5-6. With exponential delay distribution the cluster powers are determined by
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(7.5-5)

where 
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 is the per cluster shadowing term in [dB]. Normalize the cluster powers so that the sum of all cluster powers is equal to one, i.e., 
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In the case of LoS condition an additional specular component is added to the first cluster. Power of the single LoS ray is:
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and the cluster powers are not normalized as in equation (7.5-6) , but:
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(7.5-8)
where ((.) is Dirac’s delta function and KR is the Ricean K-factor as generated in Step 4 converted to linear scale. These power values are used only in equations (7.5-9) and (7.5-14), but not in equation (7.5-22).

Assign the power of each ray within a cluster as Pn / M, where M is the number of rays per cluster.

Remove clusters with less than -25 dB power compared to the maximum cluster power. The scaling factors need not be changed after cluster elimination.

Step 7: Generate arrival angles and departure angles for both azimuth and elevation.

The composite PAS in azimuth of all clusters is modelled as wrapped Gaussian (see Table 7.5-6). The AOAs are determined by applying the inverse Gaussian function (7.5-9) with input parameters Pn and RMS angle spread ASA 


[image: image142.wmf](

)

(

)

f

f

C

P

P

n

n

AOA

n

max

ln

)

4

.

1

/

ASA

(

2

,

-

=

¢

,
(7.5-9)

with 
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 defined as
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� One example survey for the US market can be found in [5]. The survey does not necessarily be representative for all the scenarios. Other ratios outside of the survey should not be precluded.  
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Set scenario, network layout and antenna parameters


Assign propagation condition (NLOS/LOS)


Calculate pathloss


Generate correlated large scale parameters (DS, AS, SF, K)


Generate XPRs


Perform random coupling of rays


Generate arrival & departure angles


Generate cluster powers


Generate delays


Draw random initial phases


Generate channel coefficient


Apply pathloss and shadowing


General parameters:


Small scale parameters:


Coefficient generation:
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